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Abstract

This paper presents an tmproved dynamic analysis for liquid annular seals with arbitrary
profile based on @ method, first proposed by Nelson and Nguyen. An improved first order
solution that incorporates a continuous tnterpolation of perturbed quantities in the circum-
ferential direction, is presented. The ortginal method uses an approzimation scheme for cir-
cumferential gradients, based on Fast Fourier Transforms (FFT). A simpler scheme based
on cubic splines is found to be computationally more efficient with better convergence at
higher eccentricities. A new approach of computing dynamic coefficients based on ezternal
specified load is introduced. This improved analysis is eztended to account for arbitrarily
varying seal profile in both arial and circumferential directions. An ezample case of an
elliptical seal with varying degrees of azial curvature is analyzed. A4 case study based on
actual operating clearances (6 azial planes with 68 clearances/plane) of an interstage seal
of the Space Shuttle Main Engine High Press Ozygen Turbopump (SSME-A TD-HPOTP) is
presented.
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spatially dependent parts of first order solution
coefficients of the variables of first order axial momentum
equation

coefficients of the variables of first order circumferential momentum
equation

nominal clearance (m)

inlet and exit clearances (m)

x, v axis clearances of elliptical seal (m)

direct damping coefficients (N-s/m)

cross coupled damping coefficients (N-s/m )
clearance function

eccentricities along r and y axes (m)

friction coefficients (Moody’s or Hirs’)

x and y components of seal force (N)
unbalance forces (N)

variables of zeroth order (steady state) equations
variables of first order (perturbed) equations
film thickness (m)

direct stiffness coefficients (N/m)

cross coupled stiffness coefficients (N/m)
length of the seal (m)

direct mass coefficients (kg)

cross coupled mass coefficients (kg)

entrance pressure (Pa)

exit pressure (Pa)

pre-swirl ratio

radius of the rotor (m)

time (s)

axial and tangential velocities (m/s)

rotor surface velocity, w R (m/s)

preload 7

axes of the elliptical whirl orbit

axial and circumnferential coordinates

density (kg/m®)

dynamic viscosity (Pa-s)
ellipticity, (cz — ¢y)/c=
eccentricity ratios
external load angle (rad)
entrance loss coefficient
angular frequency (rad/s)
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INTRODUCTION

Distortions in the interstage seals of the Space Shuttle Main Engine (SSME) High Pres-
sure Oxygen Turbopump (ATD-HPOTP) due to mechanical and thermal loads have been

distorted during the course of their operation. :

Starting with Black’s (1969) analysis of high-pressure seals, followed by Allaire’s (1972)
eccentric seal analysis and Childs’ (1983) Hirs’ bulk-flow model for tapered seals there has
been a steady improvement in the modeling of annular seals and the agreement of their
predicted behavior with experimental results.

The effect of seal distortion on the rotordynamic coefficients was first considered by
Sharrer and Nunez (1989). They adapted the analysis of a plain seal to the case of a seal
with wavy profile. The distorted seal profile was fitted with a clearance function in the form

to a change in the seal profile. Similar results for this case were reported by San Andres
(1991) using a variable properties model. Scharrer and Nelson (1990), treated a similar
problem using a partially tapered seal model.

All the work reported in the literature is limited to distortion along the length of the
seal. Detailed thermoelastic studies have revealed seal distortion is not limited to axial
direction and a similar distortion occurs along the circumference also. An example of a
distorted seal profile is shown in Fig 1. The clearances for this profile were obtained from
a thermoelastic analysis.

This paper presents an improved dynamic analysis for an annular seal with arbitrary
profile. The arbitrary seal profile may be due to distortion as above, or by design. The
analysis used for this purpose is based on an approach, first proposed by Nelson and Nguyen.
(1989)

An example film thickness analysis for an elliptical seal with varying axial curvature, is
discussed. The above improved analysis is employed to analyze a distorted interstage seal
of a SSME Turbopump and the results are compared to those of a similar seal with average
inlet and exit clearances.

THEORY
Bulk Flow Governing Equations

Mass conservation and force equilibrium considerations in the axial and circumferential
directions for the control volumes in figures 2a and 2b yield the following bulk flow con-

tinuity, axial momentum and circumferential momentum equations for an incompressible
fluid.

Lo(hv)  O(hu)  on
Rog V5o t 5 =0 (1)
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Figure 1: Predicted Clearance Profile for Turbopump Annular Seal
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where the friction factors f, and f, are defined for the Hirs and Moody friction factor models

in the appendix.
The boundary conditions at the inlet and exit of the seal are given as,

poi — po(0.9) = (1~ €)3913(0.9) 4)
vp(0,8) = psr x wR (5)
PO(LVJ) = Por (6)

where po; and po. are the entrance and exit pressures respectively, £ is the entrance loss
coefficient and psr is the pre-swirl ratio.

Film Thickness

The expression for film thickness h(z,d) as a function of eccentricity is derived in a
fixed coordinate system. instead of a “minimum film thickness” coordinate system. The
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Figure 2: Differential Fluid Volumes, a) Continuity b) Momentum

coordinate system (£,y) shown in Fig. 3, is fixed at the static eccentric position and
is oriented parallel to a user defined-global coordinate system. Typically, for eccentric

non-uniform profile in the circumferential direction. Such seals require the Eomputation of
these coefficients in the user defined coordinate system directly, as these coefficients vary

The seal geometry is, in general, defined by its clearance function ¢(z,8). A constant
¢ specifies a straight seal, a linear function in - defines a tapered sea] and so on. The
seal profile will be non-uniform if ¢ varies with B. The film thickness, which varies with
eccentricity, is derived as a function of ¢(2,3) and the eccentricity £. The expression for
the film thickness and jts gradients are given below with reference to F ig. 3. Besides
specifying the film thickness in a fixed coordinate system, this general expression is more

accurate, particularly at high eccentricities, than the more commonly used approximate
form, hg = ¢ - E.cos3 - E,sing.

ho(z,8) = \/(R + ¢)? - (Ecsing - E,cos3)? — (Ezcosd + Eysingd) - R (7)

Ohy (R +c)g5 — (E,sing ~ Eycosp)(E,cos + Bysing) “(Busind - Eycosd) (3
as \/(R +¢)? = (Ezsing - Eycosp)?

oh (R+ )
5 = v ©)

V(R +¢)? — (E,sing - Eycos3)?
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Figure 3: Diagram for Deriving General Clearance Expression

Solution Procedure for Zeroth-Order Equations

The solution for zeroth order equations involves the direct integration of the three cou-
pled nonlinear partial differential equations. Typically, an iterative procedure is used to
solve for the pressure distribution. The original analysis of Nelson and Nguyen (1988) pro-
posed a method by which the coupled partial differential equations are reduced to coupled
ordinary differential equations by approximating the circumferential gradients of the vari-
ables ug, vg and po. At each axial step in the iterative procedure, the gradients with respect
to 3 are computed based on the values of the variables at the previous step. An approxi-
mation scheme based on Fast Fourier Transforms (FFT) was used for this purpose. In the
present analysis, a simpler method based on cubic splines is used. This method is more
accurate as no truncation error is involved as in the FFT method. Also, convergence at
higher eccentricities is achieved with relatively fewer iterations than the FFT method. It is
also computationally more efficient as it does not involve the computation of CPU intensive
trigonometric functions. A similar approach based on forward differences was reported by
Simon and Frene (1992). Figure 4 illustrates typical subdivisions in the axial and circum-
ferential directions. Note that the elliptical seal in Figure 5 represents a special case of the
arbitrary profile shown in Figure 4.

The three steady state equations are arranged in the following fashion and integrated
from inlet to the exit.

a{f g“(uo’ Vo, Po, "2'3239’; ZF:ﬂn'a i&%)
£ gu(vo.to 2o g8 g 8 (10)
Bl | atemm 55

The circumference is divided into segments of equal length. The above equations are
integrated starting at each circumferential location in the direction of the corresponding
point at the next axial step. When this step is reached, all the variables i.e., uo, vo and po are
known along the circumference. These values are then used to compute the circumferential
gradients for the next step. In other words, at the i-th axial step, the circumferential
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Figure 4: Circumferential and Axial Mesh Points for Numerical Integration

gradients are computed using the values of Uo(i-1.j)» Vo(i-1.;) and Pogi -1 -1.e., the values at

the previous step. In the current analysis, an approximation scheme based on cubic splines
is used to compute these gradients. Nelson and Nguyen used the simple Euler’s method for
the above numerical integration. For the current work, integration schemes based on 4th
and 5th order Runge-Kutta method as well as Predictor-corrector methods are used.

First Order Equations

P=Ppo+epy, u=uyg+eu and v = vy + €v;.
Substitution of these expressions into equations 1-3 and neglecting second and higher
order terms yields the following first order equations.

aul ho 81’1 dhl 1 dh] _ 8h1 dhl
BT X AU e
Vo 8h1 8u0 1 61’0
- R‘(?F—(E—-Fﬁw)hx (11)
Ouy  hg Op, Ouy  hoyg Ou, o
hogt- + FE + ho“oy + R W + Ayuy + Ayvy = Aphy (12)
Oy ho 9py dvy  houg on N
hoﬁ + ;EW + houoa + TW + Byu; + Byv, = Bph, (13)

where A, 4,, 4, By, B, and By, are functions of steady state variables Yo, Vg, po and
their axial and circumferential gradients. These expressions are given in the appendix for
both the Hir’s and Moody’s friction factors models.

The boundary conditions for the first order solution are (Nelson and Nguyen, 1988),
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p1(0,8) = (1 + £)puo(0.3)u1(0,3) (14)
0(0,3) = 0 (15)

n(L,3)=0 (16)

Assuming that the rotor whirls about its equilibrium position in an elliptical orbit whose
semni-major and semi-minor axes are X, and Yq respectively, then the position of the center
of the rotor relative to its static eccentric position is given by,

X = Xpcosa (17)

Y = Ypsina (18)

where a = wt and w is the whirl frequency.
Let Az = ‘%1, and Ay = ?—'g- where co is the nominal clearance, and;

g1 = Aérpre + B€,P1y (19)

fup = Aeguyy + Aeyuyy (20)

evy = Degvir + Deytny (21)

ehy = Aezhiz + Aeyhyy (22)

hyz = —cocosacos (23)

hyy = —~cosinasinf3 (24)
Assume a solution of the form:

piz = (=, B)cosa + ax(z, B)sina (25)

ure = as(z, B)cosa + ag(z, B)sina (26)

v1z = as(z,9)cosa + ae( =, B)sina (27)

p1y = bi(z,8)cosa + ba(z, B)sina (28)

uy, = ba(z, 3)cosa + by(z, B)sina (29)

vy, = bs(z, 3)cosa + be(z, B)sina (30)

Using the above substitutions in the set of first order equations yields 12 coupled linear
partial differential equations. The same solution procedure that is used for the zeroth order
solution is used to numerically solve for variables a; and b;.
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The first order boundary conditions are expressed in the assumed solution variables as:

21(0.9) = ~(1 + €)pas(0, 3) (31)
22(0.3) = —(1 + €)pas(0. 9) (32)
as(0,4) = 0 (33)
ag(0,4) = 0 (34)
ai(L,8) =0 ~(35)

S
The original analysis assumed these variables to be harmonic and separated them into
two auxiliary functions of the form,

@ = fi(z)cosd + g,(z)sing (37)

where f; and ¢, are assumed not to vary with 8. Nelson and Nguyen 1988a) thereby apply
a second separation of variables substitution to the first order differential equations (egs.

circumferential gradients should therefore Improve the solution at higher eccentricities.

The a; and &; in the current analysis are totally general functions of : and 3 which
thereby avoids the mathematical contradiction discussed above. Furthermore, in many
cases the results of the current approach show better agreement with experimental results
then the earlier results.

The solution procedure for the 12 linear PDE’s js exactly the same as that of the zeroth
order solution. The solution is performed with 4-th and 5-th order Runge-Kutta method
and also with a predictor-corrector method. Both methods almost identical results, the
with Runge-Kutta based method being the fastest.

Dynamic Coeflicients

The force components acting on the rotor due to its motion about a static eccentric
Position is given by integrating the first order pressure field, i.e.,

~AF,

H

L s2nx
/ / eP1cosGR dJ d- (38)
0 0

L p2x
- AF, = / / ePrsingR dg d- (39)
0 0 .

The following linearized force-motion model is used to define the rotordynamic coeffi-
cients. In this equation, X and Y define the relative displacement of the rotor and F, F,



{ AF; _ Kzz  hzy { r Cez  Cry r
- = - T .
AF, —kye Ky y —cyz Cyy y
M, . i
+ [ = T } { . } (40)
—Myz  Myy y
The original analysis discretized the circumference into a number of strips and the
function values (f;,g;) are assumed to be independent of 3 over each strip. The current
method improves this approach by allowing the a; and b; to vary over each strip in obtaining
the rotordynamic coefficients. 7
Substitute eqs. 28-33 into 22-27 and in turn substitute the results into eqs. 43-45. Also
substitute eqs. 20 and 21 into 43-45. This yields:

1 L 2%
Kpp = Mogw? = — / / aycosBR dB dz (41)
Cp Jo [}
1 L 2r
Ty = — b R dB d:z 4
1 L 2
~ kye + mygw? = —/ / aysindR df d= (43)
CoJo JO
7 1 L ¢2r
Cppws = — / ] bysindR di d: (44)
Cg JOo JO
1 L 2«
~ Copu = — / / arcos3R dB dz (45)
cg Jo JoO
2 1 L 2n
kyp — Mayw? = — / /’ bycospR df dz (46)
Cp Jo JoO
1 L 2«
fpaw = — f / apsindR di dz (47)
Co JO 0
2 1 L p2r
Ky — myyw? = — / / bosinBR dB dz (48)
Cop JOo JO

These 8 equations are evaluated for at least two whirl frequencies to obtain solutions
for the 12 dynamic coefficients. A least squares approach is employed for this step. The
2D integration performed numerically are an improvement over the average value approach
employed by the previous researchers.

Dynamic Coeflicients based on External Load Specification

In some cases, it is possible to specify the angle at which external load is supported by
the seal during the operation of the turbomachine. This external load is equal and opposite
to the resultant seal force. A new method of computing the rotordynamic coefficients based
on this load angle is described below.

The static operating position of the rotor is located iteratively such that there is equi-
libfium between the external specified load and the resultant seal force. The angle at which

122



the resultant seal force acts is forced to align (180°) with the specified external load angle.
For example, unit 3-01, an experimental sea] under design at NASA (results to be discussed

later) supports the external load at a constant angle of 290° in the rotor coordinate system.

Determination of Steady State Force Equilibrium Position

A modified Newton-Raphson approach is used jn
position. At the steady state equilibrium position,

fe=Fr — Wsing = o
fy = Fy ~ Weosd =0
The modified 2-D Newton-Raphson iteration procedure js described below.

two dimensions to locate the operating

af. Of:

A""E’:i.yi + Aya‘y-!n.yi + feleiy, =0 (49)
af, of

Al?;fzi.yi + Ay?;”.ri.yi + fy,:..y.' =0 (50)

The seal forces F, and F, are computed using an initial guess of rotor Position (z,, y;),.

The gradients %f;‘-, %éi, %’;! and %’- are computed using finite differences about (i, 9:).

This iterative procedure ijs Tepeated until the specified external load is balanced by the
resultant seal forces. Once this equilibrium position is attained, the remaining analysis
Proceeds as before.

Verification Case: Allaire, et. al.

The first illustrative example compares the original and current Nguyen-Nelson ap-
proach results to the “short seal” solution employed by Allaire . All three approaches show
similar direct stiffness, damping and cross- coupled stiffness vs. eccentricity as seen in
figures 6, 7 and 8 respectively.

Seal Parameters for Allaire et al. case

seal length
rotor radius

40.6 mm (1.60 in)
39.9 mm (1.57 in)

o 0.14 mm (0.0055 in)

c. 0.14 mm (0.0055 in)

co 0.14 mm (0.0055 in)

fluid LO2

density, p 57.657 kg/m? (3.60 Ibm/ft3)

viscosity, u 7.4396x107° Pa-s (1.5538x 107 Ib-s/ft2)
AP 7.26 MPa (1050 psi)

rotor speed 23700 rpm

friction factor Moody’s

relative 0.0 (rotor)

roughness,e/2¢co  0.000001] (stator)

pre-swirl ratio (.1

inlet loss, ¢ 0.5 ]
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Direct Stittness, Kxx (MN/m)

Direct Damping, Cix (kN/m)
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EXAMPLE OF AN ARBITRARY PROFILE SEAL: AN ELLIPTICAL SEAL

The above analysis for an arbitrary profile is applied to the case of an elliptical seal with
axially varying curvature. The results for a similar linearly tapered elliptical seal, were
initially reported by San Andres (1992). The motivation for this study is two fold. The first
1s to show the general steps involved in the analysis of arbitrary profile seals and the other
is to show, in qualitative terms, the effect of a change in profile on the dynamic coefficients.

Two cases of curvature are considered for this analysis: one with a linear axial profile and
the other a quadratic axial profile. For this study, the mid-point clearance of the quadratic
profile is made 75% of (c; + ¢.)/2, i.e., 0.75 times the mid-point clearance of a linear profile
with similar inlet and exit clearances.

The equation of an ellipse is given by,

I = acosg (51)
y = hsingd (52)

where a and b are the semi-major and semi-minor axes respectively. At any angular
position g along the circumference, the radius r of the ellipse is given by, '

r = \/(acosd)? + (bsind)? (53)
and the clearance c at this location is given by,

c=r—-R (54)

where R is the radius of the rotor.

If the semi-major and semi-minor axes of the ellipse vary in some functional form along
the length of the seal, the clearance is given by,

o(2,8) = \(fi(=)cosd) + (fal=)sind)? - B (55)

where fi(z) and fp(=) are the semi-major and semi-minor axes variations along the
z-axis. The gradients of this clearance function are given in the appendix.
The ellipticity § is defined as (Fig. 5)

4

cy — ¢,
§= 4 (56)
Cy S
where ¢, and ¢, are clearances at semi-major and semi-minor axes respectively and,
¢ =¢; at inlet
€z = ¢C. at ecit
and from above,
ey = cz(1 = §) (57)

When § = 0, the ellipse reduces to a circle and for § =1, the seal contacts the rotor.
The appendix provides the functions fi(z) and f,(z) for a linear profile and a quadratic
profile, as a function of delta . The results shown are for a centered seal as a function of
ellipticity. The dynamic coefficients are normalized with respect to the coefficients for the
linear profile case at § = 0. The values used for this normalization are K., = 44975 kN/m
(256883 Ib/in), C;; = 21.78 kN-s/m (124.4 Ib-s/in) and k., = 15821 kN/m (90364 1b/in).
The seal parameters for this case are given below.
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Figure 7: Diagram for Deriving Elliptical Seal Clearance Expression
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Seal Parameters for Elliptical Seal

seal length
rotor radius

¢

Ce

Co

fluid

density, p
viscosity g
AP

rotor speed
friction factor
relative
roughness,e/2¢co
pre-swirl ratio

inlet loss, £

16.66 mm (0.656 in)

48.39 mm (1.905 in)

0.069 mm (0.00273 in)

0.099 mm (0.00390 in)

0.069 mm (0.00273 in)

LO2

1041.7 kg/m? (65.03 Ibm/ft?)
129.6x 1078 Pa-s (0.188x 1078 Ib-s/ft?)
25.39 MPa (3681 psi)

22700 rpm

Moody's

0.0 (rotor)

0.03 (stator)

0.2

0.33

The plot for direct stiffness (Fig. 9) shows the effect of a small change in profile on the
direct stiffness. For the linear case, there is a complete loss of stiffness at around § = 0.65.
The stiffness for the quadratic profile is almost twice that of the linear profile. Also, it
retains its stiffness over a much wider range than the linear profile. The difference in the
other coefficients (Figs. 10,11) are relatively small.

CASE STUDY OF A DISTORTED SEAL

" The distorted clearance profile for an interstage seal of the Space Shuttle Main Engine
High Pressure Oxvgen Turbopump (SSME-ATD-HPOTP) is shown in Fig. 1. The distorted
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Figure 9: Normalized Direct Damping .vs. Ellipticity (Elliptical Seal)
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clearance profile of this seal is obtained from a thermoelastic analysis. The clearances are
provided at six axial planes along the length of the seal with 68 clearances at each plane.
The clearances along the circumnference are located roughly equidistant.

The rotordynamic coefficients of the distorted profile are compared with those computed
using average clearances at inlet and outlet respectively. The geometry and operating
conditions at full power level FPL are given in the following table.

Seal Parameters for Distorted Seal Unit 3-01
seal length 16.66 mm (0.656 in)
rotor radius 48.39 mm (1.905 in)
avg. ¢; 0.149 mm (5.87 mils)
avg. c. 0.148 mm (5.81 mils)
co 0.149 mm (5.87 mils)
fluid LO2
density, p 1041.7 kg/m® (65.03 lbm/ft?)
viscosity g 129.6x107® Pa-s (0.188x107® 1b-s/ft?)
AP 35.25 MPa (5112 psi)
rotor speed 25000 rpm
friction factor Moody’s
relative 0.0 (rotor)
roughness,e/2co 0.8518 (stator)
pre-swirl ratio 0.2
inlet loss 0.3

The distorted seal profile is fitted with bi-cubic splines. The purpose of this spline fitting
is two fold; one is to interpolate clearances at any given axial and circurnferential location
and the other is to numerically compute axial and circumferential gradients of the seal
profile at any required location.

According to the manufacturer’s specifications, the side-load on the seal acts at a con-
stant angle of 290°. The seal coefficients for this variable profile seal are computed as a
function of side-load acting at this angle.

Figure 12. shows the relation between seal forces and eccentricity. No load operation
requires the seal to be slightly off-centered due to the distortion in the seal. Figs. 13,14
and 15 show how the dynamic coefficients vary with externally applied load and the effects
of distorted clearance profile versus average profile (average of clearances at the inlet and
exit circumferences). The coefficients are seen to be sensitive to high loads and also show
significant changes due to the distorted profile, i.e., see Fig 15.

CONCLUSIONS

The current approach has improved on the original Nelson-Nguyen method (NNM) by;
(a) Employing a continuous interpolation of the first order variables in
the circumferential direction, and
(b) Utilizing cubic splines instead of Fourier series for the circumferential
interpolation of both zeroeth and first order variables.
In addition the current method models seals with arbitrary clearance profiles in the circum-
ferential and axial directions. This capability was demonstrated with the operating seal
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profile of a SSME-HPOTP seal. Finally a
equilibrium position of i
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APPENDIX

The coefficient expressions for the first order equations are defined as

auo F.w Frr)

u = h rras e s(r.q rlrr
A o5 + (U,o + U,o) + (il + fUs) (58)
ho Oug F,, F,,
A, = EBE + uovol_f,; + U.o(vo - w)Uro (59)
1 8po dug vg Avg U
e il = i . T P SR
A p3: "Bz T RE3 T hylheli + hrli) (60)
9 Fo F,., :
B, = hoﬂ + ugvg— + UQ(UQ - w) (61)
< (rsO UrO
hO a7-"0 2 F'.w 2 Frr) v
B, = 733 + v U + (vo - w) Uo t+ fillwo + fi U 7(762)
1 Bpo Bvo Vo Bvo h,o h,-
= —— — — e — 1 7 —— n — 7 —
By > 98 Ug £ R 93 + vol,o ho + (lo w)( ,-oho (63)
(64)

with further definitions for Moody’s and Hirs’ friction models given in the following
table:

Moody's Model Hirs' Model
Uro = (uo® + (vo — w)’)1/2 Uro = (uo? + (vo — w)*)1/2
Uso = (uo® + vp?)!/2 Uso = (uo? + vo?)!/?
Reo = 222(u 1 (vy - w)?)1/2 Reo = 282(ud + (v - w)?)1/?
Ry = ph"(uo + vp%)!/? Ry = M(UO + vo?)!/?
frO - 00055[1 (1041( + 108 )1/3] frO — r{2pho R.o lmr
fuo = 291+ (1045 4 10,0109 | g < n,2hn e
gro = 00?25152)::0 (1041(, + m;) 2/3 o = _mrnr[ R.o)™
dso = 00;);;210 ( 04& + 10 ) 2/3 ga0 = —m.n,[R O}m'
hoo = 00055(104 K, | 1o° )1/3 R = ~men, [ Rpol™
hyo = 00055( 045,_ + 10 )1/3 hyo = —m,n,[R,o]""
f—r = frO fr = frO
fs = fa0 fs = fs0
fr = fr0/2 fr = fr0/2
fa=f30/2 fazfao/2
gr = grO/2 gr = gr0/2
9s = gs0/2 9s = gs0/2
he = hyo/2 he = gro/2
h, = hsO/2 h, = 930/2
F., = e Fop = =
Fy = i’"%‘g'i Fso = L;&

The first-order governing equations are expressed in terms of the a; and b; functions as;
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ho 8a, dho to Oho hovo D2z ot Das
il d Ay~ ug— h 4, - - 33 33
3 PR Jas + howas(Ay = P57 )as R 93 R 93

- col(An + uo(%u:—o %%))cosd - %sind] (65)

%‘% — howa < (A - uuﬁ)a,4 (4, - %%—’g)ae = cowugcosd — h‘;"’ %
iy
ho%"f 4 %":Eas ¥ %%as - co[(%’—‘:ﬁ ; %%)cosd " gind) - %"‘% (67)
hoi; %"«;4 + %%aﬁ = —cowcosd — %% (68)
houo%—a-— + B,az + B,as + howag = —coBpcos3 — ;0 ?9731 hcgo %(;—5 (69)
hguo%—:- + B,agq — howas + B,ag = %%% - ho%%%s (70)

’:’33‘" (Au - uo )b3+howb4+(A1, ‘;%’;—")bs = —cowupsing — ""%%—?

%%”:— — howbs + (4 — uo %f’)b4 +(An - l;;%’:;)bs

= —co[(An+ uo(%“} + %%%))sinﬂ + "‘;"’ cos) - E‘;l%’é + h"R’,‘" % (72)
ho‘zb_" 36”% + ;%’3’ bs = cowsins — };";1:;‘ (73)
ot s 2oy LT o cons 4 (G2 4 gdeingl - B (19
o B Bt = TPy
houo%l%- + Bubs — howbds + B,bg = —coBprsing — ;0 ?;:; h(}:o ?;:36 (76)

The clearance functions for the elliptical seal are given in the next table as;
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linear taper quadratic curve

fi(z) = a1 + ap: fi(z) = a1 + azz + a3:?
f2(z) = b1 + b, F2(2) = by + byx + by22
&=t Of2 = by + 2bsz
a1=R+Ci al:R+Ci

az = %(Cfg - Ci) as = ——Ll-(c" ~4dey, + 30:’)

ag = fw;(c,f — 2 + ¢)
b1=R+(1—5)C,’ b1=R+(1—6)C,'

by = (1 = 8)(ce — ci) | ba = F-(1 - )(ce — e + 3ci)
by = (1 - 8)(ce — 2¢m + ¢i))

Gradients of the clearance function for elliptical seal are given by;

e(z.3) = V(fi(2)cosB)? + (fa(z)sing)? ~ R (77)
dc  fificos?3 + fzf;.sinzﬂ

5 = (78)
* ficosd)? + (fo8inB)?

8¢ (f} - fi)cospsing (19)

% - V(ficosB)? + (fo8inB)?
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